ON BOUNDARY VALUE PROBLEMS

FOR PARTIAL DIFFERENTIAL EQUATIONS OF THE FORM
LY A(u, Lu) = f
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ABSTRACT. Generalizedly posed boundary value problems for equations of the types
LYALu = f and L A(u, Lu) = f, where £ is some general differential operation with
smooth matrix coeflicients in a general bounded domain § and A(-, -} is some continuous
operator in the vector spaces L,(Q2), are introdused and studied.

Let  be an arbitrary bounded domain in the space R with the boundary 9Q = Q\Q,
L= au(z)D°,D* = (=i0)/025"..005", a € 2], o] = )
k

el <m

be some differential operation with smooth complex j x k—matrix coefficients aq(z), i.e. its
elements belong to the space C*(Q), L™ = 3., D*(ai(z)"), a5 = @n ' be a formally

adjoint differential operation and let A : L3(Q) — L2(Q) be some continuous linear or
nonlinear operator. We shall consider at first the equation of the form

LHALH=F ' _ (1)
and boundary value problems for them.

1. We call to mind general facts about extensions of a differential operator in a domain
(see [2,4,6]). The closing of the operator, which is given on the space (C$°(£2))* by means
of the operation £, in the norm of the graph | u||} = ||““§,gm} + ||£u||i,-(m is called a

} 2

minimal operator Lo in the space L5(Q2). Below we shall often miss out vector indexes for
an ease of the writing but one can easily restore them.

A contraction of the operator, wich is generated by the operation L in the space D'({2),
onto the domain of the definition D(L) = {u € Ly(R)| Lu € Ly(Q)}, L = L|p() is called
a maximal operator L. The space D(L) is some Hilbert space with scalar product of the
norm || -|| as well as its close subspace D(Lo), which is the domain of the definition of the
operator Lo. The kernel ker L is closed in the spaces D(L) and L;(Q2), the kernel ker Lo
is closed in the spaces D(L) and ker L. Let consider another expansion of the operator

[,|03°(m, which we define L. This is the operator with the definition domain D(L), which

is the closing of the space C*(Q) = {u € C=(2)|U € C=(R"),VU|a = u} , in the norm
of the graph || - ||z.
We shall consider the following conditions:

the operator Lo : D(Lo) — L»(f) has a continuous left-inverse; (2)
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the operator L} : (L'O*‘ } = Lz( ) has a continuous left-inverse; | (3)
| = (LY’ 4)
)

= (Lo}" (5
Note, that the first condition means i‘.he fulfilment of the estimate: 3C > 0,V €
C&(), el < ClllollL,m - It is well known that L = (LE)* and L* = (Lo),
so that the conditions (4),(5) mean the equalities D(L) = D(L), D{L*) = D(L*). The
conditions {2),(3),(4),(5) was introduced in connection with the study of the concept of the
well-posed boundary valne problem which we also remind here {see [4,6]). We define the
Cauchy space C(L) as D(L}/D(Lo){[4]). A homogeneous linear boundary value problem
is by definition ([4]) the problem to find a solution u € D(L) of the relations

Lu=f, TuéB, (6)

where I' : D(L) —~ C{L) is the mapping of the factorization, B is some linear set in
C{L). The boundary condition I'u € B generates the subspace D{Lp) = ["1(B) of the
space D(L) and an operator Ly, which is a contraction of the operator L on the space
D{Lp} and which is some expansion of the operator Lg. This operator Lg is closed if
and only if the linear space B is closed in C(L) or the space D(Lp) is closed in D{L) [4].
The boundary value problem is called well-posed and the operator L is called a solvable
expansion of the operator Ly if the operator Ly : (LB) — L{§}) has a coutinuous
two-sided inverse.

STATEMENT 1. There exists a solvable expansion of ébe operator Ly and there exists a
well-posed boundary value problem for the equation Lu = f if and only if the conditions
(2) and (3) are fulfilled.

See proofs of this statement in the works of M.Vishik [6] and L.Hérmander [4].

2. The function u € D(Lp) satisfying the integral identity

<A-Lpu, Lv>=<f,u> (N

for each function v € D(Lp), will be called a generalized solution of the problem I'u €
B, T*"ALu € B*(B* € C(L*) gives the conjugate to (6) problem), generated of the
problem (6), in the domain Q for the equation (1} with any function f € D'(Lg). The
integral identity (7) means the equation '

Ipqu=Ly-A-Lgu=f (8)

In particular, the probem (7) will be called a generalized Dirichlet problem if B =
0(i.e. Lp = Lo) and a generalized Neumann problem if B = C(L).

The generalized boundary value problem (7) will be called well-posed if the operator
Lpa=Lg-A-Lp:D(Ln)— D'(Lg) has a continuous two-sided inverse M : D'{Lg) —

D(Lp) and normally well-posed if for each function f € D'(Lp), which is orthogonal to the
space ker Lg, there exists an unique to within an additive component k& € ker Ly function
w € D(Lp), which is a generalized solution of the eqnatmn (8) and which continuous
depends on f. _

These definitions imply the following statement.

STATEMENT 2. The problem (7) with a continuous in Ly{f) operator A.is normally
well-posed if and only if the operator Lp is normally solvable and the operator P- A is -
a homeomorphism of the closed space ImLyg onto itself, where P : L,(Q?) — ImLa is the
orthogonal projector. The problem (7} is well-posed i a.nd on]y if this prob.lem is normally
solvable and ker Lg = 0.

In particular, the following statements are correct.

STATEMENT 3. A generalized Dirichlet problem (7) wzt}z A=1idis well—posed if and’
only if the condition (2):5 fulfilled.

——
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STATEMENT 4. A generahzed Neumann problem (7) with A = id is normally well-posed
if and only if the operator L is normal solvable. In particular jt ho]ds if the condition {3}
is fulfilled.

From the statements of the work {1] it follows the correctness of the following facts.

STATEMENT 5. Let ) be a bounded domain Q0 with the smooth boundary. The con~
ditions (2}, (3) are satisfied and generalized Dirichlet problem for the equation (1) is
well-posed and the generalized Neumaann problem for the same equatzon is nomaﬂy cor-
rect if the operator L is one of indicated below:

1) £ is a scalar operator with constant coefficients;
2) L is an operator of the real principal type of the form

N \
L=P+ ) ci(z)P;, (9)

=1

where PJ- are operators of orders less then m = deg Py;

3} £ is an operator of the constant strength of the form (9) with analitical in the domain
Q' > § coefficients, where P; are operators with constant coefficients of strengthes less
then of the operator Py,

4) £ is a matrix operator with constant coeficients satisfying the condition of Panejach-
Fuglede.

5) L is a matrix operator, properly elliptic by Douglis-Nirenberg.
~ EXAMPLE 1. One can show that the normal solvability of the operator L is equiva-
lent to the fulfilment of the inequality 3C > 0,Yu € D(L), lufll,(q) ~ NPrertilll g S

CllLul}, gy where Frer @ Ly(§2) > ker M is the orthogonal projector. For L = V we
have ker L = {const}, Peer : u — - [ u{2) dz and the last inequality in this case has
the form of the Poincare inequality: 3C > 0,Yu € C*(Q), Jlull}, ) < mdm(foude)’ +

CliVuli o) - Lhus, the statement 2.7 asserts that the generelized Neumann problem for
Poisson equation is normally correct in a bounded domain  if and only if in this domain

such the Poincare inequality is fulfilled.
The statement 2 implies the following statement.

STATEMENT 6. Assume that the operator A : Ly(}) —» L,(f)) is continuous and the
expansion Ly is solvable. Then

1) the problem (7} is well-posed if and only if the operator A is a homeomorphism,

2) the problem (7) has a generalized solution if the operator A is surjective.

EXAMPLE 2. Let us consider as the operator £ any operator with constant coefficients
and as the operator A an Uryso}m operator Au(z) = u(z) + p f K {z,t,u(t)) dt, where

V:B te Q V€1,€3 < R 1K(3 t 51) K(Z £, {z)l < K]_(:B t) !61“'63! With a measurable Fred-

holm kernal Ki:A= [ K}z,t)dz < oo and assume that this operator A is continuous
axn

‘acted in L(£2) (there are different sets of conditions on K for this, see for example 7.
Then, as is known, the equation u = pAu + f has an unique solution u € L,(§)) for any
J € Lz () if |u| < A™? with the estimate || u}| < C(A, || f ||} and 2 continuous dependence
u on f. Therefore by the statement 6 the generalized Neumann problem, B = C(L) for
the equation £L* AL« = ¢ has an unique to within an additive component A € ker I
solution v € D(L) for any function g € D'(L}, which is orthogonal to the space ker L.
For instance, the Nenmann problem A(u(z) + f K (z,t, Au(t)) dt) = g(z), ADujeg =

0,{AAu),lon = 0, where A is the Laplace op&rahor admits the generalized setting and
szzc.h problem is solvabie for these K, 4 and f e (H S(Q))’ One can bring a lot of examples



with a convertible initegral operator A and & solvable expansion Lg, taken, for exaznpie,
from the statement 5.

3. Note, that the previous definitions are unsuitable for a consideration of the operator
depedence on lowest derivatives, for instance, we have no in the example 2 any possibility
to consider the equation of the example 2 where K = K (z,t,u(t), Vu(t), Au(t)). The

following scheme is intended just for this case.

Let us now consider once more case of the operator Lg,g acting as LBA v = Lp
Alu,Lpu) = Lj A(Ku, Lpu), where K : D(Lg) — L,({2) is some compact operator, the
expansion Lp is normal solvable, A Lo{2) x ImL — ImL is an continuous operator such
that PA(u,w) = A(Kwu,w) with the same orthoprojector P, A: D{Lg) x ImL ~» Lo(82).

We shall consider the following conditions: _

Vo € Ly(§2), the operator A(v, ) : ImZ —» Iml is a homeomorphism, (10)

the homeomorphism (;i' {v,))" : ImL -» Im[ is uniformly bounded, {11)
i.e. there exists a function 3 : R* - R*, f(r) = R such that the image
(A (v,-))"H{S5(0,7)) of the every ball $(0,r) ¢ Inl of radius r hit into the ball {0, R) C
ImL for each v € Ly{f). Note that to verify the condition {11) it suffices to prove the
condition:

the mapping (}i(v, 3 La(Q) = La(8)) is uniformly bounded {12)

if the operator A(v,-) : Lo(2) — Lo(Q) is given on aﬂﬂLg(Q) and is converted.
The fanction u € D(Lg) satisfying the integral identity
| < Alu,Lpu), Lv >=< f, v > (13)

for every function. v € D{Lg), will be called a generalized solution of the problem |
v € B, T"A(u,Lu}) € B, generated of the problem (6), in the domain { for the

equation :
LYA(u,Lu) = f (14)
with an arbitrary function f € D'(Lp). The integral identity (13) means the equation
Ipau=Ly  A(Ku,Lpu) = f. (15}

The generalized boundary value problem (13) will be called solvable if Vf € D'(Lg), Ju €
D{Lg) such that the equality (15) is satisfied and well-posed if the operator Lpy :
D(Lg) -+ D'(Lp) has a continuous two-sided inverse M : D'(Lg) — D(Lg). This
definition implies the following facts.

STATEMENT 7.Assume that the expansion Lp is noz'ma.l solvable aud ker Lp = 0. :

1). In order that a generalized problem (13) be solvable (well-posed) it is necessary and -
sufficient that the equation PA(u, Lpu) = f be solvable fcr each function f € ImLy (the
operator PA has a continuous inverse for these f).

2). In order that a generalized problem (13) be solvable it is suﬂic:ezzt that the conditions
(10),{11) be fulfilled.

Proof. The point 1) follows {just as in the statement 2) from that the mapping Ly :

D(Lg) —+ L2{f)) is an isomorphism onto its image and ker Ly L ImLp.

2). Let f € D'(Lp) be an arbitrary function. We have by the statement 6 ami the
“condition (10) that the mapping

T: D(Lg) 3 u — L5 (PA(e, )) M ((Lp)"'f) € D(Ls)
is a completely continuous operator. For each ball F 3 f we have also by the condition (11)

that there exists a ball U C ImLp oonta.mmg the preimage (4 (Ku, )" (L)1 F), Vu.

‘Then the compact mapping LT Ly transfers the closure U of the ball U into itself. We
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can now employ the wellknown Schauder prmczpie and obtain that the mapping LgTLB _
has a fixed point, therefore the problem (13} is solvable. -

Remark. We would like to have a possibility to see on the place Ku a set of any
differential expressions, but we should require that the operators of this expressions be
compact. Here we come to the foliowzng definition. We shall call the differential operation
M B~ subordinate to the operation £ and write M <<g L if D(M) D D(Lp) and the
operator [ o M : D(Lp) — Li{Q) with embidding operator [ : ImM|pr,) — L2(§)) is

compact. Here the inclusion is dense and means the presence of the a prion esthmate
Hull > Cliullsor that is the same || Lullz i) + || vl = Cll Mullz,@)

for all v € D(Lg). If the operator Lp is normally solvable and kerLp = 0, then it
has a left inverse and the last estimate implies that || Lullr,() > Cll Mullz,a) for the

same 4. Remind that in the work [5] L.Hormander introdused comparisons M < £
and M << £ for scalar differential operations with constant coeffitients, where M < £
means the inclusion D{My) O D{Ly), i.e. the same a priori estimate but for all 4 ¢
Ce(51), and M << £ means the compactness of the operator I o M : D(Lg) — Ly{)
with the embidding operator I : InM|pqy — L2(2). In [4] there are conditions on the
operator symbols for such comparisons. Of course, the obtaining of any conditions for
such comparisons in the different operator classes is a big and hard problem.

ExamPLE 3. Let us consider the equation

A (u{z) + ,u/ K (z,t,u(t), Vult), Au(t)} dt) = f(z)
0

where the function K(z,f, 1991, ..., %, &) satisfies the same conditions just as in the ex-
ample 3.1, with K;{(z,t) independent of 5. Then the conditions (10)},(11) are fulfilled
{ImA = L,((1}) and the generalized Newmann problem for the considered equation has a
solution u € D(A) for each f € D'(A), fLker Aif u} < A~ *by the statement 7 and con-
siderations of the example 3. One can consider equations of high order and also substitute
any differential operator I with counstant coefficients (or in the same way other operator
from the statement 5) for A inside and outside in the equation and obtain the same solv-
ability statement about the generalized Neumann or other problem but then one should
use the substitution of operators L; <<z L for V,V?, ..., where the last comparison was
determined in the remark. '
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